Mostrar el registro sencillo del ítem

dc.contributor.authorCecilia Canales, José María
dc.contributor.authorMorales García, Juan
dc.contributor.authorImbernón Tudela, Baldomero
dc.contributor.authorPrades Gasulla, Javier
dc.contributor.authorCano Escribá, Juan Carlos
dc.contributor.authorSilla Jiménez, Federico
dc.date.accessioned2024-02-15T12:40:36Z
dc.date.available2024-02-15T12:40:36Z
dc.date.issued2023-05-01
dc.identifier.urihttp://hdl.handle.net/10952/7393
dc.description.abstractThe Internet of Things (IoT) is driving the next economic revolution where the main actors are both data and immediacy. The IoT ecosystem is increasingly generating large amounts of data that are created but never analyzed. Efficient big data analysis in IoT infrastructures is becoming mandatory to transform this data deluge into meaningful information. Edge computing is proving to be a compelling alternative for enabling computing capabilities at the edge of the network. These computing capabilities could help in transforming the generated data into useful information. However, the edge computing platforms available on the market are low-power devices with limited computing horsepower. In this paper, we present a novel approach to providing computing resources to edge devices without penalizing their power consumption by using remotely virtualized GPUs. We evaluate this hardware environment by executing a computational-intensive clustering algorithm called Fuzzy Minimals (FM). Our results show that using a remotely virtualized GPU on the edge device provides a 3.2x speed-up factor compared to the local counterpart version. Moreover, we report up to 30% reduction in power consumption and up to 80% of energy savings at the edge device, delegating the GPU workload to the backend, transparently to the programmer.es
dc.language.isoeses
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectMachine Learninges
dc.subjectClustering algorithmses
dc.subjectEdge computinges
dc.subjectRemote Virtualizationes
dc.subjectVirtualized GPUses
dc.subjectIoTes
dc.titleUsing remote GPU virtualization techniques to enhance edge computing deviceses
dc.typearticlees
dc.rights.accessRightsopenAccesses
dc.journal.titleFuture Generation Computer Systemses
dc.description.disciplineIngeniería, Industria y Construcciónes
dc.identifier.doi10.1016/j.future.2022.12.038es


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional