Subnanomolar Detection of Ions Using Thin Voltammetric Membranes with Reduced Exchange Capacity
Estadísticas
Ver Estadísticas de usoMetadatos
Mostrar el registro completo del ítemFecha
2020Disciplina/s
FarmaciaResumen
Herein, we report on a new strategy to improve the limit of detection of ionophore-based thin membranes interrogated under accumulation/stripping electrochemical protocol. Accordingly, we demonstrate subnanomolar detection of silver ion (Ag+) in water samples by re-formulating the membrane content with a reduced amount of the cation exchanger sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (Na+TFPB–), i.e. 10 mmol kg–1 compared to 40 mmol kg–1 commonly used in previous thin cation-selective membranes. Thoughtfully, by decreasing the amount of NaTFPB in the membrane phase, a diminution of its total ion-exchange capacity is to be seen. Essentially, a lower exchange capacity causes that the saturation of the membrane occurs at a lower concentration of Ag+, allowing us to reach a lower limit of detection. This effect is indeed promoted by achieving the total replacement of the Na+ present in the membrane by Ag+ entering from the solution (even at the subnanomolar level) at shorter ac...