Textural Analysis by Means of a Grey Level Co-Occurrence Matrix Method on Patellar Tendon Ultrasonography is Useful for the Detection of Histological Changes after Whole-Body Vibration Training
Fecha
2009Disciplina/s
Actividad Física y DeporteMateria/s
Grey Level Co-Occurrence MatrixTextural Analysis
Tendon
Ultrasonography
Whole- Body Vibration
Matrices de co-ocurrencia de nivel de gris
Textura
Tendón ecografía
Vibración de cuerpo completo
Resumen
Introduction: Co-occurrence grey level matrix (GLCM) is a textural analysis method that have been useful to discriminate patterns, but no used on tendon ultrasound image. Objective: Textural analysis of patellar tendon ultrasonograph. Method: Longitudinal analytic study with 16 subjects (8 women and 8 men) young, healthy and sedentary people with training by means wholebody vibration platform (Fitvibe Medical) for 2 days x 14 weeks. Cross-sectional of patellar tendon ultrasonographics were taken with a Sonosite-180 ultrasonograph (L 5-10 MHz). By means GLCM algorithm of Image J v1.38 it were calculated five textural parameters: Uniformity (ASM), Contrast, Correlation, Homogeneity (IDM) and Entropy in four orientations (0º, 90º, 180º and 270º) and three distances between pixels (d=1, 5 and 10 pixels). Wilcoxon test (C.I. 95%) for related samples was applied (SPSS 15.0). Results: Entropy (d=5) was the most sensible to detect textural changes; perhaps ASM and Contrast can be also useful. ... Las matrices de co-ocurrencia del nivel de gris (GLCM) son útiles para el análisis textural de imágenes ya la discriminación de patrones pero hasta ahora no se han aplicado sobre imágenes ecográficas del tendón. Objetivo: Análisis textural ecográfico del tendón rotuliano. Método: Estudio longitudinal analítico con 16 sujetos (8 mujeres y 8 hombres) jóvenes, sanos y sedentarios entrenados con una plataforma de vibración vertical (Fitvibe Medical) 2 días x 14 semanas. Se tomaron cortes ecográficos transversales del tendón rotuliano antes y después del entrenamiento con un ecógrafo Sonosite-180 (Lineal 5-10 MHz). Mediante el algoritmo GLCM de Image J v1.38 se calcularon las variables texturales Uniformidad (ASM), Contraste, Correlación, Homogeneidad (IDM) y la Entropía para cuatro orientaciones (0º, 90º, 180º y 270º) y tres distancias (d=1, 5 y 10 px). Se aplicó la prueba de Wilcoxon (i.c.95%) para muestras relacionadas (SPSS 15.0). Resultados: la Entropía (d=5) fue la más sensible a los ...